

D. Chatzidimitriou, A. Pitilakis and E. E. Kriezis

Aristotle University of Thessaloniki School of Electrical & Computer Engineering Department of Telecommunications

Auth Photonics Group http://photonics.ee.auth.gr/

Auth Photonics Group http://photonics.ee.auth.gr/

Presentation outline

1. PT-Symmetry in photonics

- a. Basic PT-Symmetry concepts
- b. Passive PT-Symmetry

2. Graphene conductivity

3. Graphene Enhanced Coupler

4. Electro-optic switch

- a. Graphene impact on waveguide modes
- b. Evolution of coupler super-modes
- c. 1×2 switch

5. Polarization dependent switching

PT-Symmetry in photonics

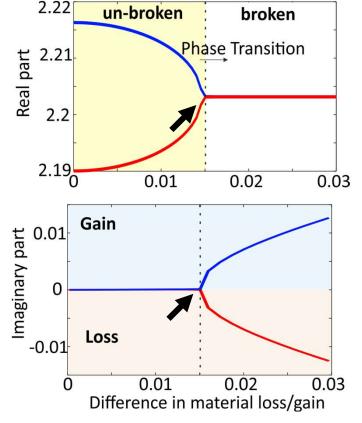
PT-Symmetry in photonics

PT Symmetry breaking in graphene-comprising photonic devices

- PT-Symmetry in photonics
- A coupled system:
 - ✓ coupled waveguides
 - \checkmark coupled resonators
 - \checkmark forward and backward modes

• Balanced gain and loss:
$$\beta_1 = \beta_2^* \Rightarrow \alpha_1 = -\alpha_2$$

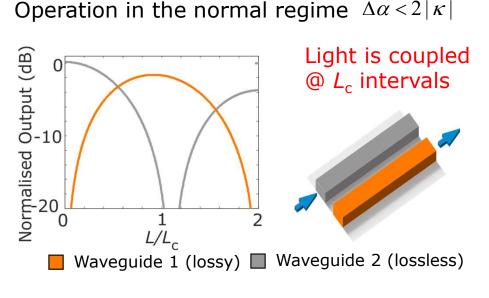
- Super-modes $\beta = \beta_0 j \frac{\alpha_1 + \alpha_2}{2} \pm \sqrt{|\kappa|^2 \left(\frac{\Delta \alpha}{2}\right)^2}, \Delta \alpha = \alpha_1 \alpha_2$
- ***** Exceptional Point at $\Delta \alpha = 2 |\kappa|$ Eigenvalues coalesce!

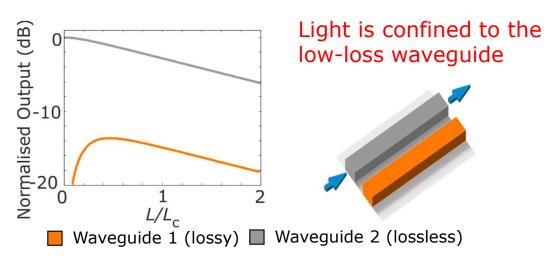

 $\Delta \alpha \rightarrow \infty \quad \left\{ \begin{array}{l} \beta_{\rm S} = \beta_0 - j\alpha_1 \\ \beta_{\rm A} = \beta_0 - j\alpha_2 \end{array} \right. \begin{array}{l} \text{Super-modes asymptotically evolve} \\ \text{into the individual propagation} \\ \text{constants} \end{array} \right.$

κ

G

♦ Exceptional point can be reached even when $\alpha_1, \alpha_2 ≥ 0$




PT-Symmetry in photonics

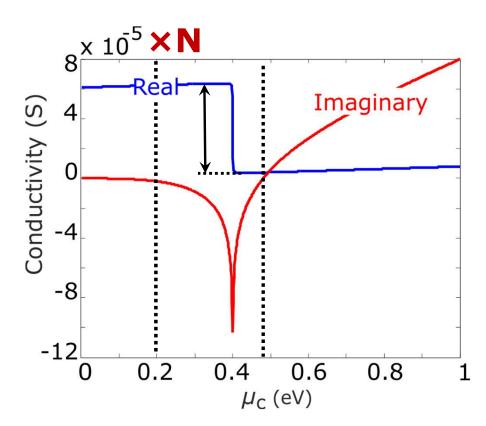
Passive PT-Symmetry

- ♦ We assumed that $\alpha_2 = 0$ and $\alpha_1 = \alpha_L$
- Losses at the normal regime
- Ideally $\alpha_{\rm L} \rightarrow 0$

Operation in the broken symmetry regime $\Delta \alpha > 2 |\kappa|$

- We assumed that $\alpha_2 = 0$ and $\alpha_1 = \alpha_H$
- Symmetry is broken BUT the modes are lossy!
- ↔ Losses depend on $\Delta \alpha = a_{\rm H}$
- Ideally $\alpha_{\rm H} \rightarrow \infty$

Graphene conductivity


Graphene surface conductivity

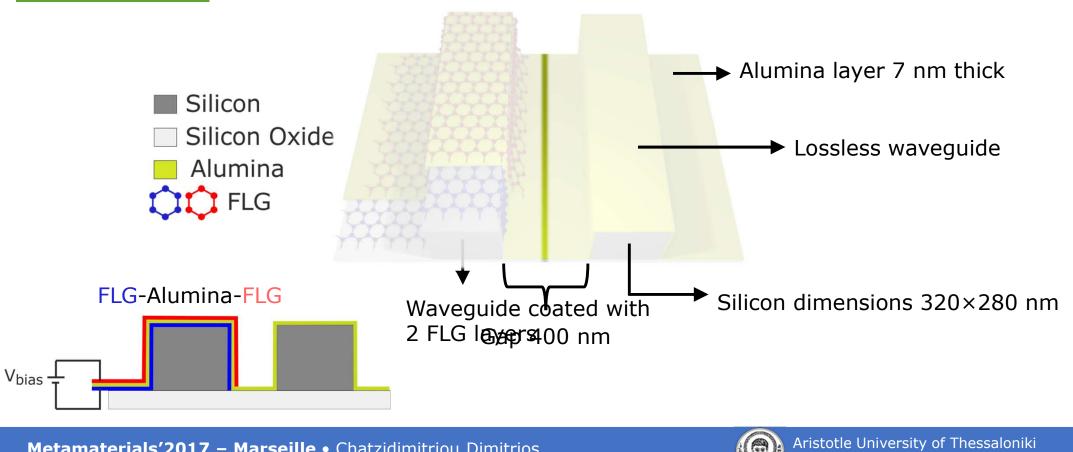
Monolayer

- \checkmark High and low conductivity regimes
- \checkmark Interband transition are prohibited above ${\sim}0.4~\text{eV}$
 - Corresponds to $\hbar\omega/2$ @ 1550 nm
- ✓ Imaginary part should be the same
 - PT requirement $\operatorname{Re}\{\beta_1\} = \operatorname{Re}\{\beta_2\}$
- Conductivity control through external electrostatic biasing

Few Layer Graphene (FLG)

✓ N times the monolayer conductivity (N<9)
 ✓ N=3 in this work

Graphene enhanced coupler

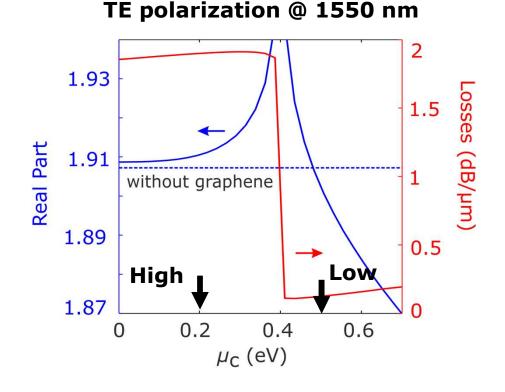


School of Electrical & Computer Engineering

9

Graphene enhanced coupler

Coupler set-up



Metamaterials'2017 – Marseille • Chatzidimitriou Dimitrios

Graphene enhanced coupler

Impact on n_{eff} of individual waveguides

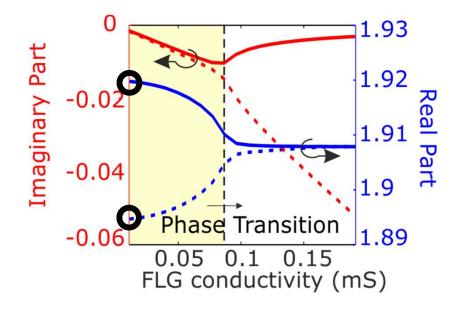
High loss state $\alpha_{
m H}$ @ 0.2 eV Low loss state $\alpha_{
m L}$ @ 0.5 eV

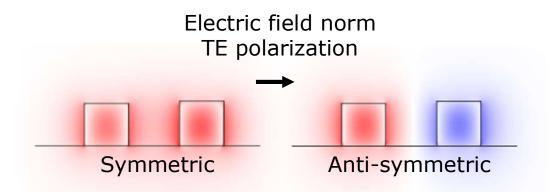
♦ There exist µ_c values with higher/lower losses **BUT** Real part of n_{eff} needs to be the same
 ✓ PT requirement
 ✓ no coupling de-tuning

 $\alpha_{\rm H}$ and $\alpha_{\rm L}$ define the device length ($L_{\rm c}$) through the IL!

✤ For an arbitrary IL level A:

 $\alpha_{\rm L}L_{\rm c} < A$ $\alpha_{\rm H}L_{\rm c} > \frac{A^2 + \pi^2}{2A}$

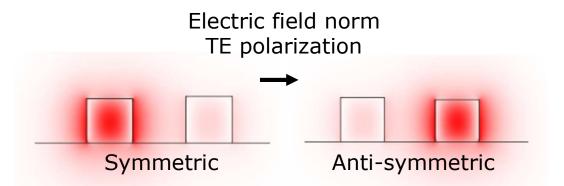

Trade off: achievable high loss state vs device length



Evolution of super-modes

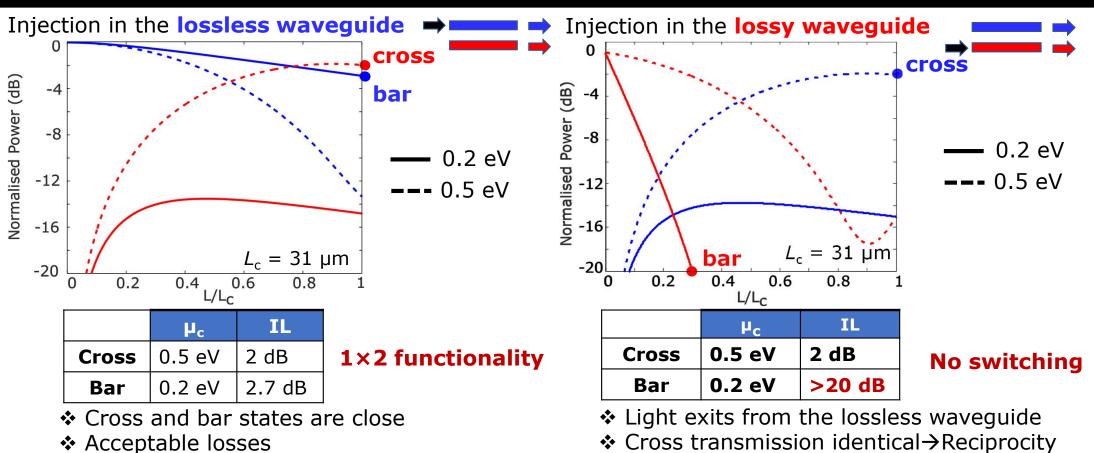
Unbroken symmetry regime, $\mu_c = 0.5 \text{ eV}$

- Injection in one of the waveguides excites in general both super-modes
- Propagation is governed by the superposition of super-modes: constructive/destructive interference
- * Light is normally coupled (cross state)

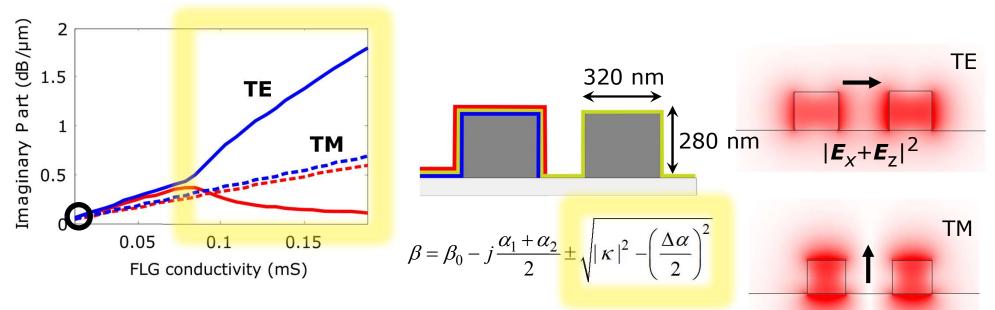


Evolution of super-modes

Broken symmetry regime, μ_c =0.2 eV



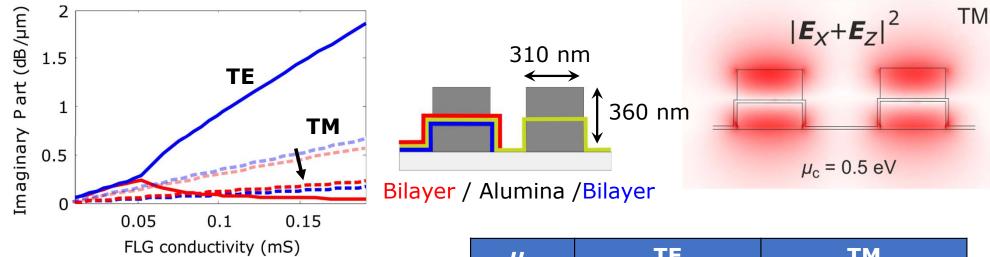
- Super-modes are now confined in the individual waveguides
- They experience high and low losses respectively
- The high loss super-mode vanishes
- Light mainly exits from the low loss waveguide (bar state)



Polarization dependent switching

Polarization dependent switching

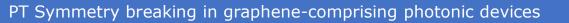
- TM mode does not enter the broken symmetry regime
- Because graphene is coated both polarization have equivalent overlap
- TM к is almost double of TE, needs double the losses
- We need a layout where one polarization weakly overlaps with graphene



 $|E_{v}+E_{z}|^{2}$

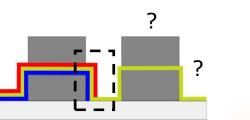
Auth Photonics Group http://photonics.ee.auth.gr/

Polarization dependent switching



- ✓ Graphene is placed so that TM modes have weak overlap
- $\checkmark\,$ Waveguide dimensions are chosen so that modes have the same $L_{\rm c}\sim\,40~\mu{\rm m}$
- Due to weaker coupling only 2 bilayers are used

μ _c	TE		ТМ	
0.5 eV	cross	1.6 db	cross	0.3 dB
0.2 eV	bar	2.8 dB	cross	3.7 dB


Injection in lossless waveguide

Future Prospects

- Polarization dependent switch improvements
 - Waveguide dimensions
 - Graphene placement
- ✤ Investigation of different waveguide types e.g. slot waveguides
 - Lower IL
 - Smaller footprint
- Nonlinear absorption phenomena
 - **Two photon absorption** (TPA) → Losses **increase** with optical power
 - Saturable absorption (SA)→ Losses decrease with optical power
 - All-optical applications

Thank You!

Any questions?